
Andrew Wissink
with

Brian Gunney, David Hysom, Richard Hornung
Center for Applied Scientific Computing

Lawrence Livermore National Laboratory

Algorithmic Issues for Scaling
Structured AMR Calculations to

Thousands of Processors

February 14, 2005
SIAM CSE05

This work was performed under the auspices of the U.S.
Department of Energy by University of California

Lawrence Livermore National Laboratory under contract
No. W-7405-Eng-48.

UCRL-PRES-209446

Outline

� Structured Adaptive Mesh Refinement (SAMR) overview

� Parallel implementation approaches used in SAMRAI

� Scaling issues on O(1000) processors

� Predictions of scaling issues on O(100,000) processors

SAMRAI provides infrastructure support
for a variety of applications

� SAMRAI provides parallel AMR support to applications
— High-level reusable AMR algorithms (e.g. timestepping, dynamic

grid generation)
— Parallel support (MPI)
— Parallel tools (VAMPIR, TAU)

— Checkpointing & restart support (HDF)

— Interfaces to solvers (PETSc, PVODE, hypre)

Current SAMRAI users regularly run on large processor systems

MCR Linux cluster IBM Blue Pacific TC2K Alpha cluster

Fine local mesh

Intermediate local mesh

Coarse global mesh

Structured AMR (SAMR) employs a
dynamically adaptive “patch” hierarchy

Patch
L0

Patches
L1

Patches
L2

� Based on methods of Berger, Colella, Oliger

� Hierarchy defines nested levels of varying
mesh resolution

� Data stored on patches covering logically
rectangular index space

Patches distributed to processors to
balance computational workload

1) Box regions constructed 2) Boxes split to
construct
patches

3) Patches
bin-packed
to processors

Proc0

Proc1

Proc2

Proc3

Proc4

Level 2
Boxes

0 1

2

3 4

0

1

2

3

4� Generally have multiple patches per processor

� Each level load balanced separately

� Spatial bin packing may be used to maintain locality of
patches on processors

� Amortize cost of creating send/receive sets over multiple
communication cycles

� Data from various sources packed into single message stream
— supports complicated variable-length data
— one send per processor pair (low latency)

Communication schedules create and
store data dependencies

Send Set Receive Set

message buffer

MPI sendCell Data (double)

Particles

packStream(...);

0

25

50

75

100

1 4 16 64 256 1024

Processors

W
al

lc
lo

ck
 ti

m
e

Measured
Ideal

� Majority of computational spent in patch integration routines. Library
code < 5% of total wallclock time

Non-adaptive calculations using SAMRAI
show good scaling

Scaled speedup for non-AMR hydro calculation

Dynamic mesh adapts to features
as solution evolves

Initial conditions:
inside sphere
density = 8.0
pressure = 40.0

outside sphere
density = 1.0
pressure = 1.0

Adaptive solution of
Euler equations

32 64 128 256 512

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
P

er
ce

nt
ag

e
W

al
lc

lo
ck

 T
im

e

Processors

Measured Solution Time on Various Processors
(3 Level Spherical Shock Problem)

Time Advance

Communication

Data Redistribution
Berger Rigoutsos

Schedule Const

Other

Adaptive problems show poor scaling in
dynamic gridding operations

Time
Advance

Re-gridding

November 2001

Non-scaled Euler
calculation

IBM Blue Pacific

Summary of what we mean by
“adaptive gridding”

Steps required to construct a new refinement level:

1. Tag cells (on coarser level) requiring refinement
2. Cluster tagged cells into “box” regions
3. Cut up “box” regions into smaller boxes and determine

processor distribution (I.e. load balance)
4. Recompute communication schedules
5. Transfer data from old to new level

% Total Time
< 1%
1% - 46%
< 1%

2% - 87%
1-2%

Cluster tagged cells Load balance Transfer data to new level

Tagged Cell Clustering Algorithm
(Berger Rigoutsos)

� Original implementation utilized global reductions to construct
box histograms
— Scales poorly with problem size – number of global reductions

grows by O(n2) (n = number gridcells)
— Scales poorly with processor count – cost of each global

reduction is O(PlogP) (P = number processors)

� Replaced with a new “manager/worker”
implementation
— Only processors holding tags participated in

communication
— Manager processor accumulates tag

histograms and distributes resulting boxes
to all processors

3
5
7
5
2

22
2
1
0
ΣΣΣΣ

-3
-4
-1
3

00
-1
0

∆∆∆∆

0 0 7 8 3 3 3 3 2 0 ΣΣΣΣ
7 -6 -6 1 0 0 -1 -2 ∆∆∆∆

Recursion level 0

1 3 3 3 2 12 ΣΣΣΣ
5 6 7 5 5 ∆∆∆∆

3
5
7
ΣΣΣΣ

5

∆∆∆∆

Recursion
level n

New implementation significantly
reduces clustering costs

� Hand coded MPI send/recvs
more effective than MPI
communicators

� Most significant
improvement on systems
with slow global reductions
— Blue pacific has slower

global reductions than
newer IBM systems

— Less significant
improvement observed on
Linux MCR system

July 2002

Non-Scaled
Euler calculation
IBM Blue Pacific

17%

3%

1%

Percentage total
simulation time

Berger-Rigoutsos – 512 processors

new

original

original
512 new with MPI-

comm new with hand
coded

0
10
20
30

40

50

60

70

80

90

100

110

W
al

lc
lo

ck
Ti

m
e

Complexity in Comm. Sched. construction
becomes significant in large problems

� Data dependencies between patches
determined by identifying intersections.

� Original algorithm compared each patch
index with all others in the problem.

� Complexity O(N2) N = number of patches

Communication schedule
construction costs grow O(N2)
with problem size

i,jupper

i,jlower

Indices

Recursive Binary Box Tree (RBBT)
efficiently describes spatial relationships

� Fast determination of box intersection

� Analogous to Octree representation
— uses bounding boxes and boxlists rather than cells

and sub-cells

— For any given box, determines small subset of boxes
that will possibly intersect it, for which we can apply
naïve O(N2) algorithm.

� Complexity analysis:
— Setup: O(N log(N))

— Query: walk the trees: O(log(N)) per box

— Runtime complexity: O(N log(N)) – approximate, may
vary for different box layouts.

List of boxes

Bounding boxes

Parallel performance of scaled linear
advection benchmark

Scaled
3 level linear advection problem

Linux MCR Cluster

0

500

1000

1500

2000

2500

3000

32 64 128 256 512 1024
Processors

W
al

lc
lo

ck
 T

im
e

0

500

1000

1500

2000

2500

3000

32 64 128 256 512 1024
Processors

W
al

lc
lo

ck
 T

im
e

Ideal
Total
Time Advance
Adaptive Gridding
Other

Original With new algorithms

Scaling results after adaptive gridding
algorithm modifications

Non-scaled
4 level Euler Problem

IBM Blue Pacific

Scaled
3 level linear advection

Linux MCR Cluster

1

10

100

1000

32 64 128 256 512 1024

Processors

W
al

lc
lo

ck
 T

im
e

100

1000

10000

100000

32 64 128 256 512
Processors

W
al

lc
lo

ck
 T

im
e

Ideal
Total
Time Advance
Adaptive Gridding
Other

Outline

� Structured Adaptive Mesh Refinement (SAMR)
overview

� Parallel implementation approaches used in SAMRAI

� Scaling issues on O(1000) processors

� Predictions of scaling issues on O(100,000) processors

A new asynchronous clustering algorithm
for very large scale parallel systems

� Our new clustering algorithm is effective in reducing costs on
O(1K) processors, but not O(10K)-O(100K) processors.

� Results from an asynchronous implementation will be presented
(B. Gunney – Tues afternoon session CP44)

Time to Cluster - MCR

0

2

4

6

8

10

12

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

Number of processors

W
al

l c
lo

ck
 (s

ec
on

ds
) Original
Asynchronous

Asynchronous
implementation avoids
global communication
and synchronization

More efficient graph-based algorithms
required for O(10K)-O(100K) procs

� Naive implementation of box operations in gridding may invoke O(N2)
algorithms (e.g. former communication schedule algorithm).

� We’ve developed more efficient graph-based algorithms that work on up
to O(1000) processors, but further work will be required

� Difficult to assess beforehand because complexity is generally problem
dependent.

PE
0

PE
1

PE
60000

Patch n
Patch n+1
…

PE
m

N patches

Number of patches
scales with number

of processors

Storage of globally-known information
may introduce memory issues

� Current approach: Patch lower/upper indices (i.e. “box”) known
globally by every MPI process (to determine data locality,
communication dependencies, etc.)

procs patches
per processor
storage (MB)

0.5K
60K

2.5K-10K
300K-1200K

< 1 MB
20-80MB

Large overhead
for nodes of

BG/L

requires consistency across processors: e.g.

BoxList boxes = level->getBoxes();

� Because # patches grows with # processors, trivial overhead
may become non-trivial on very large scale parallel systems

Concluding Remarks

� Adaptive gridding costs are our largest source of parallel
inefficiency
— Communication is cheap and scales well

— Re-gridding operations that are trivial on small numbers of
processors become significant on large numbers.

— Tree-based algorithms successful in reducing these costs.

� Fully adaptive calculations are scalable to O(1000)
processors

� Further work required to handle O(100K) processors
—New Berger-Rigoutsos clustering algorithm proposed

—Continued exploration into more efficient tree-based representations
of spatial relationships between patches

